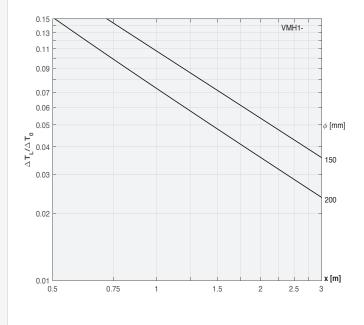


Um sowohl das Verhalten der Luftströme als auch die technischen Parameter wie Schallleistungspegel und Druckverlust berechnen zu können, konsultieren Sie bitte unser **FACT Auslegungsprogramm.**



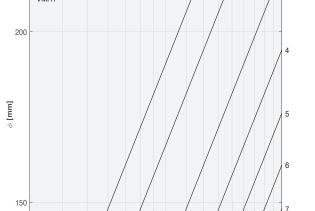
12 14 16 18 20

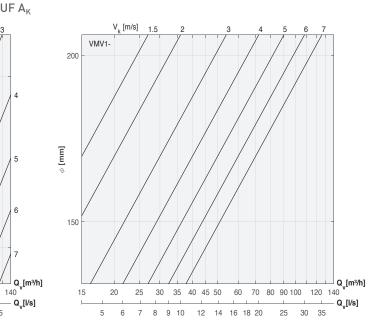
TEMPERATUR

8 9 10

Um sowohl das Verhalten der Luftströme als auch die technischen Parameter wie Schallleistungspegel und Druckverlust berechnen zu können, konsultieren Sie bitte unser **FACT Auslegungsprogramm.**

Q_v[l/s]


30 35


15

20 25

30 35 40 45 50 60 70 80 90 100 120 140

EFFEKTIVE LUFTAUSTRITTSFLÄCHE

7 8 9 10 12 14 16 18 20

	A _k [m²]
VMV1 150	0,0020
VMV1 200	0,0045
VMH1 150	0,0057
VMH1 200	0,0104

AUSWAHLBEISPIEL

_ Q_v[l/s]

25 30 35

bekannte Daten		
Volumenstrom VMH011, Qv	[m³/h]	75
Temperatur Zuluft, T ₀	[°C]	20
Temperatur Raumluft, T _a	[°C]	26
maximal zulässiger Schalldruckpegel, L _p	[dB(A)]	30
akustische Raumdämpfung, ΔL_r	[dB(A)]	8
maximale Luftgeschwindigkeit im Komfort-Zone	[m/s]	0,2
Selektion mittels Graphen		
Akustik		
geforderter maximaler Schallleistungspegel, $L_{w,L}$	[dB(A)]	38
Vorschlag Größe, Ø	[mm]	200
Druckverlust		
statischer Drukverlust, ΔP_s	[Pa]	29
Geschwindigkeit		
Luftaustrittsfläche A _k	[m²]	0,0104
Ausblasgeschwindigkeit V_k , Q_v/A_k (oder mittels Graphen)	[m/s]	2,0
Strahlweg, L _{T0.2}	[m]	2,6
Temperatur	1	
Temperaturkoeffizient Ω L _{T0.2} , Δ T _x / Δ T ₀	[-]	0,028
> Temperatur $T_x = T_a - (\Delta T_x / \Delta T_0)(T_a - T_0)$	[°C]	25,8

Um sowohl das Verhalten der Luftströme als auch die technischen Parameter wie Schallleistungspegel und Druckverlust berechnen zu können, konsultieren Sie bitte unser **FACT Auslegungsprogramm.**

ZEICHENERKLARUNG

Zeichen	Einheit	
A_k	[m²]	Effektive Luftaustrittsfläche (gemessen)
L _w	[NR] / [dB(A)]	Schallleistungspegel
L _{T0.2}	[m]	Länge des Strahls bei einer Strahlmittengeschwindigkeit von 0,2 m/s
ΔP _s	[Pa]	statischer Drukverlust
Q_v	[m³/h] / [l/s]	Volumenstrom
ΔT_x	[K]	Differenz zwischen Raum- und Strahltemperatur in Entfernung x
ΔT_0	[K]	Temperaturdifferenz zwischen Raumluft und Zuluft
V _k	[m/s]	Ausblasgeschwindigkeit, basierend auf. A _k
Х	[m]	Abstand ab der Mitte des Luftauslasses gemessen

Um sowohl das Verhalten der Luftströme als auch die technischen Parameter wie Schallleistungspegel und Druckverlust berechnen zu können, konsultieren Sie bitte unser **FACT Auslegungsprogramm.**